skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Serna, Martha_I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 2D materials have been of considerable interest as new materials for device applications. Non‐volatile resistive switching applications of MoS2and WS2have been previously demonstrated; however, these applications are dramatically limited by high temperatures and extended times needed for the large‐area synthesis of 2D materials on crystalline substrates. The experimental results demonstrate a one‐step sulfurization method to synthesize MoS2and WS2at 550 °C in 15 min on sapphire wafers. Furthermore, a large area transfer of the synthesized thin films to SiO2/Si substrates is achieved. Following this, MoS2and WS2memristors are fabricated that exhibit stable non‐volatile switching and a satisfactory large on/off current ratio (103–105) with good uniformity. Tuning the sulfurization parameters (temperature and metal precursor thickness) is found to be a straightforward and effective strategy to improve the performance of the memristors. The demonstration of large‐scale MoS2and WS2memristors with a one‐step low‐temperature sulfurization method with simple strategy to tuning can lead to potential applications such as flexible memory and neuromorphic computing. 
    more » « less